The area
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 8587 Accepted Submission(s): 6013
纯数学几何计算题,数学渣,參考大神的解析 设直线方程:y=kx+t…………………………………………………………(1) 抛物线方程:y=ax^2+bx+c……………………………………………………(2) 已知抛物线顶点p1(x1,y1)。两线交点p2(x2,y2)和p3(x3,y3) 斜率k=(y3-y2)/(x3-x2)……………………………………………………(3) 把p3点代入(1)式结合(3)式可得:t=y3-(k*x3) 又由于p1是抛物线的顶点,可得关系:x1=-b/2a即b=-2a*x1………………(4) 把p1点代入(2)式结合(4)式可得:a*x1*x1-2a*x1*x1+c=y1化简得c=y1+a*x1*x1……(5) 把p2点代入(2)式结合(4)式和(5)式可得:a=(y2-y1)/((x1-x2)*(x1-x2)) 于是通过3点求出了k,t。a,b。c即两个方程式已求出 题目时求面积s 通过积分可知:s=f(x2->x3)(积分符号)(ax^2+bx+c-(kx+t)) =f(x2->x3)(积分符号)(ax^2+(b-k)x+c-t) =[a/3*x^3+(b-k)/2*x^2+(c-t)x](x2->x3) =a/3*x3*x3*x3+(b-k)/2*x3*x3+(c-t)*x3-(a/3*x2*x2*x2+(b-k)/2*x2*x2+(c-t)*x2) 化简得: 面积公式:s=-(y2-y1)/((x2-x1)*(x2-x1))*((x3-x2)*(x3-x2)*(x3-x2))/6; 2015,7,20
#includeint main(){ int t; double x1,x2,x3,y1,y2,y3,s; scanf("%d",&t); while(t--){ scanf("%lf%lf%lf%lf%lf%lf",&x1,&y1,&x2,&y2,&x3,&y3); s=(y2-y1)/((x2-x1)*(x2-x1))*((x3-x2)*(x3-x2)*(x3-x2))/6; printf("%.2lf\n",-s); } return 0;}